تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.

فيديو: كتابة متسلسلة مُعطاة باستخدام رمز التجميع

معاذ صالح

استخدم رمز التجميع ∑ لكتابة المتسلسلة (−٢/١) + (٤/١) − (٨/١) + (١٦/١) − _.

٠٤:٤٣

‏نسخة الفيديو النصية

استخدم رمز التجميع ∑ لكتابة المتسلسلة: سالب واحد على اثنان، زائد واحد على أربعة، ناقص واحد على ثمانية، زائد واحد على ستة عشر، ناقص إلى ما لا نهاية.

عشان نكتب المتسلسلة باستخدام رمز التجميع، محتاجين أول حاجة نحدد هل هي متسلسلة حسابية أم هندسية. فأول حاجة هنوجد الفرق بين كل عنصرين متتاليين. وإذا كان الفرق ثابت بين كل عنصرين متتاليين، فده معناه إن المتسلسلة حسابية. فنحسب الفرق بين العنصرين الأول والتاني. فالفرق هيبقى واحد على أربعة، ناقص سالب واحد على اتنين، ده هيساوي … واحد على أربعة زائد واحد على اتنين. وبتوحيد المقامات، ده هيساوي واحد على أربعة، زائد اتنين على أربعة؛ يعني هيساوي تلاتة على أربعة.

بعد كده نوجد الفرق بين العنصرين التاني والتالت. فده هيساوي سالب واحد على تمنية، ناقص واحد على أربعة. وده هيساوي بتوحيد المقامات سالب واحد على تمنية، ناقص اتنين على تمنية؛ يعني هيساوي سالب تلاتة على تمنية.

فنقدر نلاحظ إن الفرق بين العنصرين الأول والتاني ما بيساويش الفرق بين العنصرين التاني والتالت. وبالتالي فالمتسلسلة ليست حسابية. فهنتأكد إذا كانت المتسلسلة هندسية ولا لأة، وده بإننا نشوف النسبة بين كل عنصرين متتاليين. فإذا كانت النسبة بين كل عنصرين متتاليين ثابتة، فالمتسلسلة في الحالة دي هتكون هندسية.

فنحسب النسبة بين العنصرين الأول والتاني. وده بإننا نحسب واحد على أربعة، على سالب واحد على اتنين. ده هيساوي واحد على أربعة، في سالب اتنين. اللي هيساوي سالب اتنين على أربعة، يعني هيساوي بعد التبسيط سالب واحد على اتنين.

بعد كده نوجد النسبة بين العنصرين التاني والتالت. فنحسب سالب واحد على تمنية، على واحد على أربعة. ده هيساوي سالب واحد على تمنية، في أربعة. يعني هيساوي سالب أربعة على تمنية، اللي هيساوي بعد التبسيط سالب واحد على اتنين.

فهنلاحظ إن النسبة بين العنصرين الأول والتاني، بتساوي النسبة بين العنصرين التاني والتالت. وبالتالي فالمتسلسلة هندسية.

في المتسلسلة الهندسية، إذا كان الحد الأول بيساوي أ، ففي الحالة دي الحد التاني هيساوي أ اللي هو الحد الأول، مضروب في النسبة الثابتة بين كل عنصرين متتاليين، اللي هي سالب واحد على اتنين. وهيبقى الحد التالت بيساوي أ مضروب في سالب واحد على اتنين تربيع. وهكذا بالنسبة لباقي الحدود.

بمعنى إننا هنضيف واحد للأُس بتاع سالب واحد على اتنين في كل مرة. فممكن نقول إن الحد النوني هيساوي الحد الأول اللي هو أ، مضروب في سالب واحد على اتنين أُس ن ناقص واحد، حيث ن هو رقم الحد.

وبما إن الحد الأول اللي هو أ بيساوي المتسلسلة سالب واحد على اتنين، فممكن نقول إن الحد النوني بيساوي سالب واحد على اتنين، مضروب في سالب واحد على اتنين أس ن ناقص واحد.

في حالة ضرب عددين ليهم نفس الأساس بنجمع الأسس. وبما إن أُس الحد الأول بيساوي واحد، فالحد النوني هيساوي سالب واحد على اتنين أُس واحد زائد ن ناقص واحد. يعني هيساوي سالب واحد على اتنين أس ن.

وبالتالي ممكن نقول إن المتسلسلة سالب واحد على اتنين، زائد واحد على أربعة، ناقص واحد على تمنية، زائد واحد على ستاشر، ناقص إلى ما لا نهاية. باستخدام رمز التجميع هتساوي مجموع سالب واحد على اتنين أُس ر، من ر بتساوي واحد إلى ما لا نهاية.