نسخة الفيديو النصية
حلل ﺱ تربيع زائد تسعة باستخدام مجموعة الأعداد المركبة.
للإجابة عن هذا السؤال، علينا أن نتذكر القاعدة التي نستخدمها عند تحليل مجموع مربعين. يمكننا فعل ذلك باستخدام الأعداد المركبة؛ حيث نجد أن ﺃ تربيع زائد ﺏ تربيع يساوي ﺃ زائد ﺏﺕ مضروبًا في ﺃ ناقص ﺏﺕ. ويمكننا إثبات هذه القاعدة من خلال توزيع القوسين أو فكهما باستخدام طريقة ضرب حدي القوس الأول في حدي القوس الثاني.
بضرب أول حدين في القوسين، نحصل على ﺃ تربيع. وبضرب الحدين الخارجيين، نحصل على سالب ﺃﺏﺕ. وبضرب الحدين الأوسطين، نحصل على موجب ﺃﺏﺕ. وأخيرًا، نضرب الحدين الأخيرين، لنحصل على سالب ﺏ تربيع ﺕ تربيع. ونتذكر من خلال معرفتنا بالأعداد المركبة أن ﺕ تربيع يساوي سالب واحد. وبما أنه يمكننا حذف الحدين المشتملين على ﺃﺏﺕ، فيتبقى لدينا ﺃ تربيع ناقص ﺏ تربيع مضروبًا في سالب واحد. يمكننا تبسيط ذلك إلى ﺃ تربيع زائد ﺏ تربيع.
بالعودة إلى السؤال مرة أخرى، نجد أن قيمة ﺃ هي ﺱ، وقيمة ﺏ هي ثلاثة؛ لأن ثلاثة تربيع يساوي تسعة. إذن يمكننا تحليل ﺱ تربيع زائد تسعة باستخدام مجموعة الأعداد المركبة لنحصل على ﺱ زائد ثلاثة ﺕ مضروبًا في ﺱ ناقص ثلاثة ﺕ.