فيديو السؤال: إيجاد المتغيرات باستخدام نظرية التناسب في المثلث الرياضيات

إذا كانت القطعة المستقيمة ﻫﺩ ∥ القطعة المستقيمة ﺟﺏ، فأوجد قيمة ﺱ.

٠٣:٤٥

‏نسخة الفيديو النصية

إذا كانت القطعة المستقيمة ﻫﺩ موازية للقطعة المستقيمة ﺟﺏ، فأوجد قيمة ﺱ.

نحن نعلم من السؤال أن القطعة المستقيمة ﻫﺩ موازية للقطعة المستقيمة ﺟﺏ، وما سنفعله هو إلقاء نظرة على ما يسمى بنظرية التناسب في المثلث. وما تنص عليه هذه النظرية هو أنه إذا كان هناك خط مواز لأحد أضلاع المثلث ويقطع الضلعين الآخرين، فإن هذا الخط يقسم هذين الضلعين بشكل متناسب.

لكن ما الذي يعنيه ذلك عمليًّا؟ حسنًا، يمكننا تطبيق ذلك على المثلث لدينا. وبفعل ذلك، يمكننا القول إن ﺃﻫ على ﻫﺟ يساوي ﺃﺩ على ﺩﺏ. وبهذا الشكل يتم تطبيق نظرية التناسب في المثلث. يمكننا أيضًا أن نقول إن ﺃﺟ على ﺃﻫ يساوي ﺃﺏ على ﺃﺩ، لأن هذا سيشير أيضًا إلى نظرية التناسب في المثلث. حسنًا، بعد أن أصبحت لدينا هذه المعلومات، دعونا نستخدمها في حل هذه المسألة وإيجاد قيمة ﺱ.

كما ذكرنا من قبل، ﺃﻫ على ﻫﺟ يساوي ﺃﺩ على ﺩﺏ. لذا، يمكننا القول إن لوغاريتم ٢٧ للأساس ثلاثة على لوغاريتم ثلاثة للأساس ثلاثة يساوي لوغاريتم ﺱ للأساس ثمانية على لوغاريتم ثمانية للأساس ثمانية. حسنًا، يمكننا الآن إعادة كتابة ذلك بشكل مختلف لأنه يمكننا القول إن لوغاريتم ٢٧ للأساس ثلاثة يساوي لوغاريتم ثلاثة تكعيب للأساس ثلاثة. بعد ذلك، يمكننا استخدام إحدى قواعد اللوغاريتمات. وهي تنص على أن لوغاريتم ﻡ أس ﻙ للأساس ﺏ يساوي ﻙ لوغاريتم ﻡ للأساس ﺏ.

عندما نطبق ذلك، يمكننا إعادة كتابة المعادلة. لدينا الآن ثلاثة لوغاريتم ثلاثة للأساس ثلاثة على لوغاريتم ثلاثة للأساس ثلاثة يساوي لوغاريتم ﺱ للأساس ثمانية على لوغاريتم ثمانية للأساس ثمانية. حسنًا، هناك طريقتان يمكننا استخدامهما في الخطوة الآتية من إيجاد الحل.

أولًا، في الطرف الأيمن من المعادلة، يمكننا قسمة البسط والمقام على لوغاريتم ثلاثة للأساس ثلاثة، ما يعطينا ثلاثة في واحد على واحد. لكن يمكننا أيضًا الحصول على النتيجة نفسها باستخدام إحدى قواعد اللوغاريتمات. وهي تنص على أن لوغاريتم ﺏ للأساس ﺏ يساوي واحدًا. ومن ثم، فإن لوغاريتم ثلاثة للأساس ثلاثة يساوي واحدًا. وعليه، فإننا نحصل على ثلاثة في واحد على واحد.

حسنًا، نلاحظ أنه يمكننا أيضًا استخدام هذه القاعدة في الطرف الأيسر من المعادلة؛ لأن لدينا لوغاريتم ثمانية للأساس ثمانية في المقام. وبتطبيق هذه القاعدة، يمكننا القول إن هذا سيساوي واحدًا. ومن ثم، ما يمكننا فعله هو إعادة كتابة المعادلة على صورة ثلاثة يساوي لوغاريتم ﺱ للأساس ثمانية.

حسنًا، يمكننا الآن تحويل ثلاثة يساوي لوغاريتم ﺱ للأساس ثمانية إلى الصورة الأسية لأن المعادلة لدينا على الصورة لوغاريتم ﻡ للأساس ﺏ يساوي ﺃ. وعليه، ﺏ أس ﺃ يساوي ﻡ. إذا ألقينا نظرة على المعادلة لدينا، فسنلاحظ أن ﺃ يساوي ثلاثة، وﺏ يساوي ثمانية، وﻡ يساوي ﺱ. إذن، يمكننا القول إن ﺱ يساوي ثمانية تكعيب أو ثمانية أس ثلاثة. ومن ثم، يمكننا القول إنه إذا كانت القطعة المستقيمة ﻫﺩ موازية للقطعة المستقيمة ﺟﺏ، فإن قيمة ﺱ تساوي ٥١٢.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.