تم إلغاء تنشيط البوابة. يُرجَى الاتصال بمسؤول البوابة لديك.

شارح الدرس: مبدأ العَدِّ الأساسي الرياضيات

في هذا الشارح، سوف نتعلَّم كيف نُوجِد عدد جميع النواتج المُمكِنة في فضاء العيِّنة باستخدام مبدأ العَدِّ الأساسي.

تخيَّل أنك تشتري هاتفًا جديدًا، ولديك خياران للحجم؛ هما طراز مقاس شاشته ٥ بوصات، وآخَر مقاس شاشته ٦ بوصات، وهناك ثلاثة خيارات للَّوْن؛ هما أسود وذهبي وأبيض. وتريد معرفة عدد الخيارات المُتاحة إجمالًا. إحدى أسهل الطُّرق لتمثيل هذه الحالة هي استخدام مخطط الشجرة البيانية. يوضِّح مخطط الشجرة البيانية الآتي خيارَيْ مقاس شاشة الهاتف، وأسفل كلِّ خيار منهما نوضِّح خيارات اللَّوْن الثلاثة.

وبالمثل، يُمكننا تمثيل هذه الخيارات باستخدام مخطط الشجرة البيانية؛ بحيث يكون الاختيار الأول هو اختيار اللَّوْن، والثاني هو اختيار مقاس الشاشة، كما هو موضَّح فيما يأتي.

من هذا المخطط، يُمكننا رؤية أن هناك ستة خيارات إجمالًا. يُمكننا أيضًا التوصُّل إلى هذه الإجابة بكتابة كلِّ الخيارات المُمكنة. وبالطبع، فإن رسم مخطط الشجرة البيانية أو كتابة جميع الخيارات المُمكنة ليس عمليًّا حتى عندما يكون لدينا عدد محدود من الخيارات. على سبيل المثال، لن يكون عمليًّا أن نرسم مخطط الشجرة البيانية لإيجاد عدد تنسيقات الملابس المُمكنة باستخدام ٥ بلوزات و٥ تنانير و٥ أحذية. لذا، نحتاج إلى طريقة أفضل لحساب عدد الاحتمالات.

إذا فكَّرنا فيما نفعله عند تكوين مخطط الشجرة البيانية، فسنلاحظ سريعًا كيف يُمكننا تعميم ذلك للتعامل مع عدد أكبر من الخيارات. في مثال الهاتف، بدأنا بالتفكير في أحد الخيارات، مثل حجم الهاتف. في هذه الحالة، يكون لدينا خياران، ويُمكننا بعد ذلك اختيار لون من الألوان الثلاثة لكلِّ خيار من هذين الخيارين. ومن ثَمَّ، نجد أن العدد الكلي للاحتمالات هو ٢×٣. وتُعرَف هذه الطريقة لإيجاد عدد الاحتمالات أو النواتج باسم مبدأ العدِّ الأساسي.

تعريف: مبدأ العدِّ الأساسي

إذا كان لدينا الحدثان المستقلَّان 𞸀، 𞸁؛ بحيث يكون عدد النواتج المُمكنة للحدث 𞸀 هو 𞸎، وعدد النواتج المُمكنة للحدث 𞸁 هو 𞸑، فإن العدد الكلي للنواتج المُمكنة المُختلفة لهذين الحدثين معًا هو حاصل ضرب 𞸎×𞸑.

في هذا التعريف، استخدمنا مصطلح الأحداث المستقلَّة. ونقصد بهذا أن الناتج المترتِّب على وقوع أحد الحدثين لا يُغيِّر النواتج المُمكنة للحدث الآخَر. على سبيل المثال، إذا اخترنا قطعتَيْ شوكولاتة من علبة بها ٤ قِطَع شوكولاتة، فإن عدد النواتج المُمكنة لا يساوي ٤×٤. ويرجع السبب في ذلك إلى أنه عند اختيار قطعة الشوكولاتة الأولى، فإننا نغيِّر النواتج المُمكنة للحدث الثاني؛ فعند أخْذ قطعة شوكولاتة واحدة، نُقلِّل عدد النواتج المُمكنة للاختيار الثاني؛ حيث يتبقَّى ثلاث قِطَع شوكولاتة فقط في العلبة. في الحالات التي يؤثِّر فيها أحد الحدثين على الآخَر مثل تلك الحالة، لا يُمكننا إيجاد العدد الكلي للنواتج بمجرد ضرب عدد النواتج المُمكنة للحدثين المنفصلين كما لو أنهما وقعا بشكل مستقلٍّ؛ بل يتعيَّن علينا معرفة الطريقة التي يؤثِّر بها الحدثان أحدهما على الآخَر.

مثال ١: تطبيق مبدأ العدِّ الأساسي

يقدِّم مقهًى ٢٠ وجبة مختلفة و١٢ مشروبًا مختلفًا. ما عدد الطُّرق المُختلفة التي يستطيع بها شخص اختيار وجبة واحدة ومشروب واحد؟

الحل

بتطبيق مبدأ العدِّ، نجد أن لدينا ٢٠ اختيارًا للوجبات و١٢ اختيارًا للمشروبات، ومن ثَمَّ، فإن العدد الكلي للطُّرق التي يستطيع بها شخص ما تكوين مجموعة مختلفة بها وجبة ومشروب يساوي حاصل ضرب ٠٢×٢١=٠٤٢.

كما رأينا، يُعَدُّ تطبيق مبدأ العدِّ الأساسي أمرًا بسيطًا إلى حدٍّ ما. لكنْ هل يُمكننا تطبيقه عندما يكون لدينا أكثر من حدثين مستقلَّيْن؟ بالطبع يُمكننا ذلك. في الواقع، يُمكننا تعميم ذلك ليشمل الحالات التي يكون لدينا فيها أيُّ عدد من الأحداث، فإذا كان لدينا 𞸍 من الأحداث المستقلَّة 𞸀،𞸀،،𞸀١٢𞸍 لها 𞸋،𞸋،،𞸋١٢𞸍 من النواتج على الترتيب، فإن عدد النواتج المُختلفة المُمكنة يكون 𞸋×𞸋××𞸋١٢𞸍. في هذه الحالات، يكون تطبيق مبدأ العدِّ الأساسي بسيطًا مثلما في حالة وجود حدثين، كما سيوضِّحه المثال الآتي.

مثال ٢: استخدام مبدأ العدِّ الأساسي مع أحداث متعدِّدة

توجد في أحد متاجر ألواح التزلُّج ١٠ أنواع من اللوح الخارجي، و٣ أنواع من الهياكل المعدنية التي تُركَّب بها العجلات، و٤ أنواع من العجلات. ما عدد ألواح التزلُّج المُختلفة التي يُمكن تكوينها؟

الحل

باستخدام مبدأ العدِّ الأساسي، لإيجاد العدد الكلي لألواح التزلُّج المُختلفة التي يُمكننا تكوينها، يُمكننا ببساطة ضرب عدد الاختيارات المتوفرة لكلِّ جزء من أجزاء لوح التزلُّج معًا. ومن ثَمَّ، نحصل على العدد الكلي لألواح التزلُّج المُختلفة التي يُمكننا تكوينها عن طريق ٠١×٣×٤=٠٢١.

إذا كان لدينا عدة أحداث، 𞸀،𞸀،،𞸀١٢𞸍، كلٌّ منها له العدد نفسه من النواتج 𞸋، فبدلًا من كتابة:

للحصول على العدد الكلي للنواتج المُمكنة المُختلفة، يُمكننا ببساطة كتابة ذلك على الصورة 𞸋𞸍.

مثال ٣: مبدأ العدِّ الأساسي مع عدة أحداث مستقلة لها العدد نفسه من النواتج المُمكنة

تجيب دينا عن استطلاع للرأي عن طريق الإنترنت مكوَّن من ٩ أسئلة، إجابتها «نعم»، أو «لا». ما عدد الطُّرق المُمكنة التي يمكن أن تجيب بها دينا عن الأسئلة؟

الحل

هناك ٩ أسئلة لكلٍّ منها إجابتان محتملتان؛ هما «نعم» و«لا». ربما تعتقد أن عدد الخيارات يساوي ٩×٢. لكن هذا غير صحيح. سيكون الحال كذلك إذا كان لدينا حدثان، أحدهما له ناتجان مُمكنان، والآخَر له ٩ نواتج، بينما نحن لدينا ٩ أحداث مستقلَّة، لكلٍّ منها إجابتان محتملتان. ومن ثَمَّ، باستخدام مبدأ العدِّ الأساسي، نجد أن لدينا إجمالي ٢٩ من النواتج المختلفة. وعليه، فإن عدد الطُّرق التي يمكن أن تجيب بها دينا عن جميع الأسئلة هو ٥١٢.

في بعض الحالات، يكون لدينا مجموعة من الأحداث لها العدد نفسه من النواتج، وأحداث لها أعداد مختلفة من النواتج. وهذه الحالة سنوضِّحها في المثال الآتي.

مثال ٤: تطبيق مبدأ العدِّ الأساسي في مواقف حياتية

مُفكِّك شفرات يُحاوِل إيجاد قيمة لعدد مُكوَّن من ثمانية أرقام. يوضِّح الشكل التالي الأرقام التي توصَّل إليها بالفعل. لقد قلَّص اختياراته حتى الرقم الذي يُمثِّله الحرف 𞸢 الذي ينتمي إلى مجموعة الأعداد {٥،٦،٤}. إذا افترضنا أنه حاليًّا لا يعرف أيَّ شيء عن الأرقام الأخرى، فما عدد الأعداد المتبقية المُمكِن له تجريبها؟

١٧٩٦𞸢

الحل

بما أن مُفكِّك الشَّفَرات يعرف أوَّل أربعة أرقام دون أدنى شكٍّ، فعلينا التركيز فقط على آخِر أربعة أرقام. الرقم الذي يمثِّله 𞸢 يُمكن أن يكون واحدًا من الأعداد ٤ أو ٥ أو ٦. ومن ثَمَّ، هناك ٣ نواتج مُمكنة للرقم الذي يمثِّله 𞸢. بالنسبة إلى آخِر ثلاثة أرقام، يُمكن أن تكون أيَّ رقم من صفر إلى ٩. ومن ثَمَّ، يُوجَد ١٠ نواتج مُمكنة لكلِّ رقم منها. ومن ثَمَّ، عند تطبيق مبدأ العدِّ الأساسي، يكون إجمالي عدد الأعداد المتبقية لديه الممكن له تجريبها هو ٣×٠١=٠٠٠٣٣.

مثال ٥: مبدأ العدِّ الأساسي مع الأحداث المركَّبة

افترض أنه أُلقِيَ ١٠ عملات معدنية منتظمة في نفس الوقت الذي أُدير فيه القرصان الدوَّاران. باستخدام مبدأ العدِّ الأساسي، أوجد العدد الكلي للنواتج المُمكنة.

الحل

نبدأ بالتفكير في عدد النواتج المُمكنة لكلِّ قرص من القرصين الدوَّارين. القرص الأوَّل مقسَّم إلى أربع مناطق ملوَّنة؛ ومن ثَمَّ، يَنتُج عنه أربعة نواتج مُمكنة. أما بالنسبة إلى القرص الآخَر، فهناك ثماني مناطق مختلفة ممثَّلة بالحروف من 𞸀 إلى 𞸇. ومن ثَمَّ، تُوجَد ثمانية نواتج مُمكنة للقرص الدوَّار الثاني. سنفكِّر الآن في العملات العشر. لكلِّ عملة ناتجان مُمكنان؛ هما صورة وكتابة. لذا، هناك ١٠ أحداث لكلِّ حدثٍ منها ناتجان مُمكنان. ومن ثَمَّ، باستخدام مبدأ العدِّ الأساسي، نحصل على العدد الكلي للنواتج المُختلفة عن طريق: ٢×٤×٨=٨٦٧٢٣.٠١

النقاط الرئيسية

  • يُتيح لنا مبدأ العدِّ الأساسي إيجاد العدد الكلي للنواتج المُختلفة لعدة أحداث مستقلَّة بإيجاد حاصل ضرب عدد نواتجها المُمكنة المنفردة.
  • لا يُمكن تطبيق مبدأ العدِّ الأساسي إلَّا على الأحداث المستقلَّة. إذا غيَّر ناتجُ حدثٍ ناتجَ أحداثٍ تالية له، فعلينا مُراعاة هذا التأثير عند محاولة إيجاد العدد الكلي للنواتج المُمكنة.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.