شارح الدرس: انتقالات الإلكترون بين مستويات الطاقة | نجوى شارح الدرس: انتقالات الإلكترون بين مستويات الطاقة | نجوى

شارح الدرس: انتقالات الإلكترون بين مستويات الطاقة الفيزياء • الصف الثالث الثانوي

انضم إلى نجوى كلاسيز

شارك في حصص الفيزياء المباشرة على نجوى كلاسيز وتعلم المزيد حول هذا الدرس من أحد مدرسينا الخبراء!

في هذا الشارح، سوف نتعلَّم كيف نحسب طاقة الفوتون الممتصِّ أو المنبعِث عند انتقال إلكترون من مستوى طاقة ذري إلى آخَر.

تذكَّر البنية العامَّة للذرة، كما هو موضَّح في شكل ذرة الهيدروجين الآتي.

تتألَّف النقطة الوردية في المركز، وهي النواة، من بروتونات ونيوترونات. والنقطة الزرقاء حولها عبارة عن إلكترون. يُمكن أن تشغل الإلكترونات عدَّة مناطق مختلفة، تُسمَّى الأغلِفة، أثناء دورانها حول النواة. تُرقَّم هذه الأغلفة من الداخل إلى الخارج، كما هو موضَّح في الشكل الآتي.

وتُسمَّى الأغلِفة أيضًا بمستويات طاقة الإلكترونات. هذا لأن الغلاف الذي يشغله الإلكترون يحدِّد كمية طاقته. فالإلكترونات ذات الطاقة الأقلِّ، تُوجَد في الغلاف الداخلي الأول؛ أيِ الغلاف الأول، الذي يُسمَّى أيضًا الحالة الأرضية. وعندما يتحرَّك إلكترون بعيدًا عن المركز؛ أي يزيد رقم غلافه، تصبح له طاقة أكبر.

لا يُمكن أن يُوجَد الإلكترون بين الأغلِفة أو مستويات الطاقة. فالأغلِفة ومستويات الطاقة ليستْ سوى أعداد صحيحة كاملة، ويُرمَز لها بعدد الكم الرئيسي، 𝑛. أقلُّ قيمة مُمكِنة لـ 𝑛 تساوي واحدًا، وهو يمثِّل الغلاف الداخلي الأول أو مستوى الطاقة الأول. يوضِّح الشكل الآتي المواضع الصحيحة وغير الصحيحة للإلكترونات.

كلُّ مستوًى من مستويات طاقة الإلكترونات يُقابِل كمية محدَّدة من الطاقة، ولا بدَّ أن تكون الإلكترونات في مستوى الطاقة 𝑛. هذا يعني أن كلَّ إلكترون في مستوى طاقة معيَّن له نفس المقدار المحدَّد من الطاقة.

على سبيل المثال: إذا رمزنا إلى مستوى الطاقة الأول بـ 𝐸، فإن جميع الإلكترونات الموجودة في مستوى الطاقة الأول لها طاقة مقدارها 𝐸. إذا كان مستوى الطاقة الثاني هو 𝐸، فإن جميع الإلكترونات التي به ستكون لها طاقة مقدارها 𝐸، وهكذا مع جميع مستويات الطاقة. وهذا موضَّح في الشكل الآتي.

طاقة الإلكترونات صغيرة جدًّا؛ لذا تُستخدَم وحدة الإلكترون فولت (eV) بدلًا من الجول. التحويل بين الوحدتين كالآتي: 1=1.6×10.eVJ

كلُّ عنصر يحتوي على كمية مختلفة من الطاقة لأغلِفته، لكن هذا الشارح سيَستخدِم مستويات الطاقة للهيدروجين فقط. يوضِّح الشكل الآتي مستويات الطاقة، 𝑛، وطاقات ترابط الإلكترونات المناظِرة في ذرة الهيدروجين.

مستوى الطاقة على اليمين؛ حيث أدنى مستوًى مُمكِن هو الحالة الأرضية؛ أيِ المستوى رقم واحد. يُمكننا أن نرى فجوة كبيرة بين مستوى الطاقة الأول والمستويات الأخرى. هذا يعني أن معظم طاقة الإلكترون تأتي من كونه في الغلاف الأول، بينما تقلُّ طاقة كلِّ مستوًى لاحق بمقدارٍ أقلَّ فأقلَّ.

على المحور الأيسر، الطاقة موضَّحة بوحدة سالب إلكترون فولت. والسبب في إشارة السالب هنا هو أن هذه الإشارة لا توضِّح مقدار طاقة الإلكترون، بل توضِّح الطاقة اللازمة لإزالته من غلاف معيَّن؛ أيْ طاقة الترابط.

يُستخدَم هذا الاصطلاح غير الاعتيادي؛ لأن هناك حدًّا أقصى لمقدار الطاقة المُمكِنة للإلكترون، الموضَّح بطاقة مقدارها صفر في أعلى الشكل. وإذا تجاوز الإلكترون هذا المستوى من الطاقة (عادة عن طريق امتصاص طاقة فوتون)، فإنه يترك الذرة تمامًا، كما نرى في الشكل الآتي.

الإلكترونات الموجودة في مستويات الطاقة الأعلى تكون مرتبطة ارتباطًا أضعف بالذرة، حيث تتطلَّب طاقة أقلَّ للخروج من الذرة.

يُمكن طرْد الإلكترونات من الذرة إذا كانت طاقتها عالية بما يكفي، ولكن حركة الإلكترونات تحدث داخل الذرة أيضًا، وهي الانتقال بين مختلف مستويات الطاقة. للانتقال إلى مستويات طاقة أعلى، لا بدَّ أن يكتسب الإلكترون طاقة، يكتسبها عادة من امتصاص فوتون. للانتقال إلى مستويات طاقة أقلَّ، لا بدَّ أن يفقد الإلكترون طاقة، الأمر الذي يجعله يبعث فوتونًا.

يعتمد مقدار الطاقة المفقودة أو المكتسبة على مستويات الطاقة التي يتنقل بينها الإلكترون. على سبيل المثال، في الشكل الآتي، يهبط إلكترون من مستوى الطاقة الثاني، 𝐸، إلى الحالة الأرضية 𝐸.

وعند حدوث ذلك، نرى هذه الطاقة تتحرَّر في صورة فوتون. عندما يهبط إلكترون إلى مستوى طاقة أقلَّ، ينبعِث منه فوتون طاقته تساوي الفرق بين طاقتَيِ المستويين. يُعطَى الفرق الدقيق في الطاقة بالمعادلة: Δ𝐸=𝐸𝐸.

وفقًا للتمثيل البياني السابق، طاقة الحالة الأرضية، 𝐸، تساوي 13.6 eV، وطاقة مستوى الطاقة الثاني تساوي 3.4 eV. بالتعويض بهاتين القيمتين نحصل على: Δ𝐸=(3.4)(13.6)3.4(13.6)=10.2,eVeVeVeVeV ومن ثَمَّ، فإن طاقة هذا الفوتون تساوي 10.2 eV.

لنلقِ نظرةً على مثال.

مثال ١: إيجاد طاقة الفوتون المنبعِث عند الانتقال من مستوى الطاقة الرابع إلى مستوى الطاقة الثاني

يوضِّح الشكل انتقال إلكترون في ذرة هيدروجين من 𝑛=4 إلى 𝑛=2 باعثًا فوتونًا عند حدوث ذلك.

  1. ما طاقة الفوتون بالإلكترون فولت؟ قرِّب إجابتك لأقرب منزلتين عشريتين.
  2. ما طاقة الفوتون بالجول؟ استخدِم القيمة 1.6×10 C لشحنة الإلكترون. اكتب إجابتك بالصيغة العلمية، لأقرب منزلتين عشريتين.

الحل

الجزء الأول

طاقة الفوتون هي الفرق بين مستوى الطاقة الرابع، 𝐸، ومستوى الطاقة الثاني، 𝐸. ويُمكن التعبير عن هذا الفرق باستخدام المعادلة: Δ𝐸=𝐸𝐸.

نرى من الشكل أن 𝐸 تساوي 0.85 eV، وأن 𝐸 تساوي 3.4 eV. بالتعويض بهاتين القيمتين في المعادلة نحصل على: Δ𝐸=(0.85)(3.4)(0.85)(3.4)=2.55.eVeVeVeVeV

إذن طاقة الفوتون، لأقرب منزلتين عشريتين، هي 2.55 eV.

الجزء الثاني

نعرف طاقة الفوتون بوحدة الإلكترون فولت من الجزء الأول، 2.55 eV. علينا الآن تحويل ذلك إلى وحدة الجول. تذكَّر أن نسبة التحويل بين الإلكترون فولت والجول هي: 1=1.6×10,eVJ وهو ما يعني أن كلَّ 1 eV يكافئ 1.6×10 J: 1.6×101.JeV

بضرب هذه العلاقة في طاقة الفوتون، 2.55 eV، تُحذَف وحدة الإلكترون فولت، ونحصل على الإجابة بوحدة الجول كالآتي: 1.6×101×2.55=4.08×10.JeVeVJ

إذن الطاقة بوحدة الجول، لأقرب منزلتين عشريتين، تساوي 4.08×10 J.

عندما ينتقل الإلكترون إلى مستوى طاقة أقلَّ أو أعلى، فإنه يبعَث فوتونًا أو يمتصُّه، على الترتيب. تذكَّر أنه يُمكن التعبير عن طاقة الفوتون هذه، 𝐸، باستخدام المعادلة: 𝐸=𝑓, حيث 𝑓 يمثِّل تردُّد الفوتون، يمثِّل ثابت بلانك الذي يساوي 6.63×10 J⋅s.

يُمكن ربْط هذه الطاقة بفرق الطاقة بين مستويات طاقة الإلكترونات لإيجاد تردُّد الفوتون. لنلقِ نظرةً على مثال لانتقال إلكترون في ذرة هيدروجين من مستوى الطاقة الثاني، 𝐸، إلى الحالة الأرضية 𝐸.

حُدِّد الفرق في الطاقة في هذه الحالة، فكان 10.2 eV. هذا الفرق في الطاقة بين مستويَيْ طاقة الإلكترون يساوي طاقة الفوتون المنبعِث: 𝐸=𝑓,𝐸=Δ𝐸=𝐸𝐸.

وهذا يعني أنه بربْط مستويَيِ الطاقة معًا بهذه الطريقة، يُمكننا تحديد تردُّد الفوتون. للقيام بذلك، دعونا نكوِّن معادلة طاقة الفوتون بدلالة تردُّده، 𝑓. يُمكننا عزْل التردُّد في هذه المعادلة في طرف بمفرده بقسمة الطرفين على ثابت بلانك، ، كما يأتي: 𝐸=𝑓𝐸=𝑓, وهو ما يحذف من الطرف الأيمن، ويتبقَّى التردُّد فقط: 𝐸=𝑓.

قبل المُضِيِّ قُدُمًا، علينا تحويل ثابت بلانك، ، إلى إلكترون فولت؛ بحيث تتطابَق الوحدات مع وحدات فرق الطاقة بين مستويات طاقة الإلكترونات. يُوجَد 1.6×10 J في 1 eV: 11.6×10.eVJ

إذن ضرب هذه العلاقة في ثابت بلانك سيؤدِّي إلى حذْف وحدة الجول، تاركًا وراءَه إلكترون فولت·ثانية: 11.6×10×6.63×10=4.144×10.eVJJseVs

إذن ثابت بلانك معبَّرًا عنه بدلالة وحدة الإلكترون فولت يساوي 4.14×10 eV⋅s.

يُمكننا الآن التعويض بقيمتَيِ الطاقة وثابت بلانك في المعادلة لإيجاد قيمة التردُّد: 𝐸=𝑓.

طاقة الفوتون تساوي 10.2 eV، وثابت بلانك يساوي 4.14×10 eV⋅s. هذا يُعطينا: 𝑓=(10.2)(4.14×10).eVeVs

تُحذَف وحدة الإلكترون فولت ويتبقَّى لدينا فقط s/1: (10.2)(4.14×10)=2.46×101.eVeVss

وحدة s/1 تكافئ الهرتز، Hz. وهذا يعني أن: 2.46×101=2.46×10,sHz إذن تردُّد الفوتون يساوي 2.46×10 Hz.

لنلقِ نظرةً على مثال.

مثال ٢: إيجاد تردُّد الفوتون المنبعِث

يوضِّح المخطط انتقال إلكترون في ذرة هيدروجين من 𝑛=3 إلى 𝑛=1، باعثًا فوتونًا عند حدوث ذلك.

  1. ما طاقة الفوتون؟ قرِّب إجابتك لأقرب منزلتين عشريتين.
  2. ما تردُّد الفوتون؟ استخدِم القيمة 4.14×10 eV⋅s لثابت بلانك. اكتب إجابتك بالصيغة العلمية، لأقرب منزلتين عشريتين.

الحل

الجزء الأول

طاقة الفوتون هي الفرق بين مستويَيِ الطاقة اللذين يتنقَّل الإلكترون بينهما. إذا كان مستوى الطاقة الثالث هو 𝐸 ومستوى الحالة الأرضية هو 𝐸، فيُمكننا التعبير عن فرْق الطاقة في صورة المعادلة: Δ𝐸=𝐸𝐸.

طاقة 𝐸 هي 1.51 eV، وطاقة 𝐸 هي 13.6 eV. بالتعويض بهاتين القيمتين في المعادلة نحصل على: (1.51)(13.6)=12.09,eVeVeV إذن طاقة الفوتون المنبعِث، لأقرب منزلتين عشريتين، والمُشار إليها فيما يأتي بـ 𝐸، هي 12.09 eV.

الجزء الثاني

لإيجاد تردُّد هذا الفوتون، نربط تردُّد الفوتون بطاقته التي أوجدناها في الجزء الأول. تذكَّر أن معادلة طاقة الفوتون الواحد هي: 𝐸=𝑓, التي يُمكن إعادة ترتيبها بدلالة التردُّد في صورة: 𝐸=𝑓.

قيمة 𝐸 من الجزء الأول هي 12.09 eV، ولدينا قيمة ثابت بلانك في المُعطَيات بدلالة وحدة الإلكترون فولت، وتساوي 4.14×10 eV⋅s. بالتعويض بهاتين القيمتين في المعادلة نحصل على: (12.09)(4.144×10)=𝑓.eVeVs

تُحذَف وحدة الإلكترون فولت، ويتبقَّى لدينا فقط s/1: (12.09)(4.144×10)=2.92×101.eVeVss

وحدة s/1 هي نفسها وحدة الهرتز، Hz. ومن ثَمَّ، تصبح الإجابة: 2.92×101=2.92×10.sHz

تردُّد هذا الفوتون المنبعِث، لأقرب منزلتين عشريتين، هو 2.92×10 Hz.

أحيانًا يكون من الأفضل معرفة الطول الموجي للفوتون بدلًا من تردُّده. تذكَّر أن معادلة إيجاد طاقة الفوتون الواحد باستخدام الطول الموجي هي: 𝐸=𝑐𝜆, حيث يمثِّل ثابت بلانك، 𝑐 يمثِّل سرعة الضوء التي تكون عادة 3×10 m/s، 𝜆 يمثِّل الطول الموجي للفوتون.

لكي نعزل الطول الموجي، 𝜆، في طرف بمفرده، نضرب طرفَيِ المعادلة في 𝜆. هذا يُعطينا: 𝐸×𝜆=𝑐𝜆×𝜆, وهو ما يحذف 𝜆 من الطرف الأيمن: 𝐸𝜆=𝑐.

الآن علينا فقط قسمة كلا الطرفين على طاقة الفوتون، 𝐸، كالآتي: 𝐸𝜆𝐸=𝑐𝐸.

بحذْف 𝐸 من الطرف الأيسر، يصبح لدينا: 𝜆=𝑐𝐸.

لنلقِ نظرةً على مثال نَستخدِم فيه هذه المعادلة.

مثال ٣: تحديد الطول الموجي للفوتون المنبعِث

يوضِّح الشكل انتقال إلكترون في ذرة هيدروجين من 𝑛=3 إلى 𝑛=2، باعثًا فوتونًا عند حدوث ذلك.

  1. ما طاقة الفوتون؟
  2. ما الطول الموجي للفوتون؟ استخدِم القيمة 4.14×10 eV⋅s لثابت بلانك. قرِّب إجابتك لأقرب نانومتر.

الحل

الجزء الأول

طاقة الفوتون هي الفرق بين مستويَيِ الطاقة اللذين يتنقَّل بينهما الإلكترون. إذا كان مستوى الطاقة الثالث هو 𝐸، ومستوى الطاقة الثاني هو 𝐸، فيُمكننا التعبير عن هذا الفرق في صورة المعادلة: Δ𝐸=𝐸𝐸.

قيمة 𝐸 هي 1.51 eV، وقيمة 𝐸 هي 3.4 eV. بالتعويض بهاتين القيمتين في المعادلة نحصل على: Δ𝐸=(1.51)(3.4)(1.51)(3.4)=1.89,eVeVeVeVeV إذن طاقة الفوتون تساوي 1.89 eV.

الجزء الثاني

لإيجاد الطول الموجي لهذا الفوتون، نربط طوله الموجي بطاقته التي أوجدناها في الجزء الأول. تذكَّر أن المعادلة التي تربط طاقة الفوتون بطوله الموجي هي: 𝐸=𝑐𝜆, التي يُمكن إعادة ترتيبها لإيجاد الطول الموجي في صورة: 𝜆=𝑐𝐸.

نحن نعرف طاقة الفوتون، 𝐸، من الجزء الأول، وهي 1.89 eV. القيمتان الأخريان هما: 𝑐، وهي سرعة الضوء التي تساوي 3×10 m/s، وثابت بلانك، ، وهو يساوي 4.14×10 eV⋅s. بالتعويض بهذه القِيَم في المعادلة نحصل على: 𝜆=4.14×103×10/(1.89).eVsmseV

تُحذَف وحدة إلكترون فولت عندما نقسم ثابت بلانك في البسط على الطاقة في المقام على النحو الآتي: 𝜆=2.19×103×10.sms

ثم نضرب هذين الحدَّيْن الأخيرين معًا، فتُحذَف وحدة الثانية، ويتبقَّى لدينا وحدة المتر فقط كالآتي: 2.19×103×10=6.57×10.smsm

الآن كلُّ ما علينا فعله هو أن نكتب الإجابة بوحدة النانومتر. يُوجَد 10 متر في النانومتر الواحد، كما نرى في العلاقة: 110,nmm التي يُمكننا ضربها بعد ذلك في الطول الموجي بوحدة المتر، لنحصل عليه بوحدة النانومتر، كالآتي: 110×6.57×10=657.nmmmnm

الطول الموجي، لأقرب نانومتر، يساوي 657 nm.

لكي ينتقل الإلكترون لمستوى طاقة أعلى، لا بدَّ أن يمتصَّ فوتونًا. تُحدِّد طاقةُ الفوتون الممتصِّ المستوى الذي ينتقل إليه الإلكترون، فكلما زادتْ طاقة الفوتون الممتصِّ انتقل الإلكترون إلى مستوى طاقة أعلى. إذا كانت طاقة الفوتون مرتفعة للغاية، فقد يُغادِر الإلكترون الذرة تمامًا، مسبِّبًا تأين الذرة. وهذا موضَّح في الشكل الآتي.

لكي يتحقَّق ذلك، لا بدَّ أن تتجاوَز طاقة الفوتون طاقة الترابط القُصوى لأغلِفة الإلكترونات. تُوجَد طاقة الترابط القُصوى هذه عند الحالة الأرضية، أو مستوى الطاقة الأول للإلكترونات. إذن في حالة الهيدروجين، لا بدَّ أن يكون للفوتون 13.6 إلكترون فولت أو أكثر من الطاقة لخروج الإلكترون من الذرة.

لنلقِ نظرةً على مثال لامتصاص فوتون بواسطة إلكترون.

مثال ٤: إيجاد الطول الموجي اللازم للفوتون الممتصِّ لطرْد الإلكترون من الذرة

يوضِّح المُخطَّط طاقة الترابط لكلِّ مستوًى من مستويات الطاقة في ذرة هيدروجين. في حالة وجود إلكترون في الحالة الأرضية، ما الطول الموجي للفوتون الذي يجب أن يمتصَّه كي تصبح ذرة الهيدروجين مُتأيِّنة تمامًا؟ استخدِم القيمة 4.14×10 eV⋅s لثابت بلانك. قرِّب إجابتك لأقرب منزلة عشرية.

الحل

الطاقة اللازمة لكي تصبح ذرة الهيدروجين متأيِّنة بالكامل تعني الطاقة اللازمة لكي يترك الإلكترون الذرة تمامًا. وبما أن هذا الإلكترون في الحالة الأرضية، إذن يحتاج الإلكترون أن يمتصَّ فوتونًا طاقته، 𝐸، تساوي على الأقلِّ 13.6 eV.

تذكَّر أن المعادلة التي تربط الطول الموجي بطاقة الفوتون هي: 𝐸=𝑐𝜆, التي يُمكن إعادة ترتيبها لإيجاد الطول الموجي، وذلك في صورة: 𝜆=𝑐𝐸.

نعرف قيمة طاقة الفوتون اللازمة لطرْد الإلكترون من الذرة 13.6 eV، وثابت بلانك 4.14×10 eV⋅s، وسرعة الضوء 3×10 m/s. بالتعويض بهذه القِيَم في المعادلة نحصل على: 𝜆=4.14×103×10/(13.6),eVsmseV إذن عندما نقسم ثابت بلانك في البسط على الطاقة في المقام، تُحذَف وحدة الإلكترون فولت، ويتبقَّى لدينا وحدة الثانية، كالآتي: 𝜆=3.05×103×10.sms

بضرب هذين الحدَّيْن الأخيرين معًا، نحذف وحدة الثانية، ويتبقَّى لنا فقط وحدة المتر، وهو ما يُعطينا: 3.05×103×10=9.13×10.smsm

علينا الآن كتابة الإجابة بوحدة النانومتر. يُوجَد 10 متر في نانومتر واحد. وهذا يُعطَى بالعلاقة: 110,nmm التي يُمكننا ضربها بعد ذلك في الطول الموجي بوحدة المتر، لنحصل عليه بوحدة النانومتر، كما يأتي: 110×9.13×10=91.3.nmmmnm

ومن ثَمَّ، فإن الطول الموجي اللازم للفوتون لكي يؤيِّن ذرة الهيدروجين بالكامل هو 91.3 nm.

تُصنَّف الانتقالات بين مستويات طاقة الإلكترونات إلى عدَّة مجموعات. عندما يهبط إلكترون إلى مستوى طاقة أقلَّ، يكون لهذا الانتقال اسم مجموعة مخصَّص. يَعرِض الجدول الآتي أسماء هذه المجموعات.

مستوى الطاقةاسم المجموعة
الأولليمان
الثانيبالمر
الثالثباشن
الرابعبراكت
الخامسفوند

لا يعتمد اسم المجموعة على مستوى الطاقة الذي ينتقل منه الإلكترون. فالإلكترونات التي تهبط من مستوى الطاقة الثالث أو الرابع أو الخامس إلى مستوى الطاقة الثاني ستكون جميعها في مجموعة بالمر. يوضِّح الشكل الآتي مجموعات ليمان وبالمر وباشن لانتقال الإلكترونات في ذرة الهيدروجين.

لنلقِ نظرةً على مثال.

مثال ٥: تحديد اسم مجموعة الانتقالات بين مستويات طاقة الإلكترونات

يوضِّح المُخطَّط أربعة انتقالات مُمكِنة يُمكِن لإلكترون أن يقوم بها بين مستويات الطاقة لذرة هيدروجين. ماذا يُطلَق على هذه المجموعة من الانتقالات؟

الحل

لا يُهِمُّنا المستوى الذي انتقلتْ منه الإلكترونات، بل يُهِمُّنا فقط المستوى الذي انتقلت إليه. يوضِّح الجدول الآتي أسماء هذه المجموعات ومستويات الطاقة التي تهبط إليها الإلكترونات.

مستوى الطاقةاسم المجموعة
الأولليمان
الثانيبالمر
الثالثباشن
الرابعبراكت
الخامسفوند

بالرجوع إلى هذا الجدول، نجد أنه عندما يهبط الإلكترون إلى مستوى الطاقة الثاني، فإنه يفعل ذلك في مجموعة بالمر. تنتقل جميع الإلكترونات الموجودة في هذا المخطط إلى المستوى الثاني للطاقة.

إذن الإجابة هي مجموعة بالمر.

لنلخِّص ما تعلَّمناه في هذا الشارح.

النقاط الرئيسية

  • يُخبرنا عدد الكم الرئيسي، 𝑛، بمستوى الطاقة المرتبط به الإلكترون.
  • والإلكترونات الموجودة في مستويات الطاقة الأعلى تكون مرتبطة ارتباطًا أضعف مقارنة بالإلكترونات في مستويات الطاقة الأقلِّ، مع وجود أقوى ترابط في مستوى الحالة الأرضية، 𝑛=1.
  • تكتسب الإلكترونات الطاقة عن طريق امتصاص الفوتونات، وتفقد طاقتها بانبعاث الفوتونات. هذه الفوتونات لها طاقة تساوي فرق الطاقة بين مستويَيِ الطاقة اللذين يتنقَّل بينهما الإلكترون.
  • يُمكن استخدام طاقة الفوتون المنبعِث من الإلكترون أو الممتصِّ بواسطته لإيجاد تردُّد الفوتون وطوله الموجي.
  • تُسمَّى مجموعات معيَّنة من انتقالات الإلكترونات حسب مستوى الطاقة الذي تنتقل إليه: مجموعات ليمان، وبالمر، وباشن، وبراكت، وفوند.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية