شارح الدرس: التمثيل البياني للسرعة المتجهة الفيزياء

في هذا الشارح، سوف نتعلَّم كيف نفسِّر التمثيل البياني للإزاحة مقابل الزمن، والتمثيل البياني للسرعة المتجهة مقابل الزمن، اللذين يمثِّلان حركة الأجسام

المسافة والسرعة القياسية كميتان قياسيتان، وهو ما يعني أن لهما مقدارًا فقط. ولا يُمكن أن تُمثَّل المسافة والسرعة القياسية إلَّا بقِيَم موجبة. ولا تتحقَّق القِيَم المحدَّدة على التمثيل البياني للمسافة مقابل الزمن والتمثيل البياني للسرعة القياسية مقابل الزمن إلَّا في الجزء الذي تحدُّه القِيَم الموجبة لمحوري التمثيل البياني، كما هو موضَّح في الشكل الآتي.

أمَّا الإزاحة والسرعة المتجهة، فهما كميتان متجهتان، وهو ما يعني أن لهما اتجاهًا ومقدارًا كذلك. وبالنسبة إلى الحركة على طول خطٍّ، فإن أحد الاتجاهين يمثِّل القِيَم الموجبة، ويمثِّل الاتجاه المعاكس القِيَم السالبة. ومن ثَمَّ، فإن النقاط المحدَّدة على التمثيل البياني للإزاحة مقابل الزمن والتمثيل البياني للسرعة المتجهة مقابل الزمن تتحقَّق في الجزء الذي تحدُّه القِيَم الموجبة للزمن على التمثيل البياني، كما هو موضَّح في الشكل الآتي.

وتمثِّل القِيَم الموجبة للإزاحة أو السرعة المتجهة النقاط التي تقع أعلى محور الزمن، بينما تمثِّل القِيَم السالبة النقاط التي تقع أسفل محور الزمن.

ويُمكننا النظر إلى التمثيل البياني للسرعة المتجهة مقابل الزمن الذي يوضِّح جسمين يتحرَّكان في اتجاهين متعاكسين بالسرعة نفسها.

يوضِّح الشكل الآتي التمثيل البياني للسرعة القياسية مقابل الزمن لكلا الجسمين.

والآن لنلقِ نظرةً على جسم له سرعة متجهة ابتدائية مقدارها 1 m/s، تتباطأ وتغيِّر اتجاهها، وله سرعة نهائية مقدارها 1 m/s. يوضِّح الشكل الآتي التمثيل البياني للسرعة المتجهة مقابل الزمن والتمثيل البياني للسرعة القياسية مقابل الزمن للجسم.

نلاحِظ أنه في اللحظة التي تساوي عندها السرعة المتجهة صفرًا، تكون السرعة القياسية صفرًا.

كما نلاحِظ أن ميل الخط على التمثيل البياني للسرعة المتجهة مقابل الزمن وميل كلا الخطين على التمثيل البياني للسرعة القياسية مقابل الزمن لهما المقدار نفسه.

أمَّا في الحالات التي تقترب فيها السرعة المتجهة من القيمة صفر، فإن ميل التمثيل البياني للسرعة القياسية مقابل الزمن يكون سالبًا. بينما في الحالات التي تبتعد فيها السرعة المتجهة عن القيمة صفر، يكون ميل التمثيل البياني للسرعة القياسية مقابل الزمن موجبًا.

وتتحقَّق أيضًا هذه العلاقة بين السرعة المتجهة والزمن إذا كانت السرعة المتجهة الابتدائية سالبة والسرعة المتجهة النهائية موجبة، كما هو موضَّح في الشكل الآتي.

ويُمكننا أن نلاحظ من ذلك أنه لا يُهِمُّ إذا كانت السرعة المتجهة تقترب من القيمة صفر سواءً أكانت بدايةً من قيمة موجبة أم سالبة؛ ففي كلتا الحالتين، سيَنتُج عن ذلك ميل للتمثيل البياني للسرعة القياسية مقابل الزمن قيمته سالبة.

يُمكننا أن نلاحِظ أيضًا أنه لا يُهِمُّ إذا كانت السرعة المتجهة تبتعد عن القيمة صفر باتجاه قيمة موجبة أو سالبة؛ ففي كلتا الحالتين، سيَنتُج عن ذلك ميل للتمثيل البياني للسرعة القياسية مقابل الزمن قيمته موجبة.

لنتناول الآن مثالًا نقارن فيه بين السرعة المتجهة والسرعة القياسية للأجسام من خلال دراسة التمثيل البياني للسرعة المتجهة مقابل الزمن.

مثال ١: المقارنة بين السرعة المتجهة والسرعة القياسية للأجسام باستخدام التمثيل البياني للسرعة المتجهة مقابل الزمن

يوضِّح التمثيل البياني كيفية تغيُّر السرعة المتجهة لجسمين مع الزمن.

  1. هل يتحرَّك الجسمان بنفس السرعة القياسية؟
  2. هل قطع الجسمان مسافتين متساويتين من موضعَيْهما الابتدائيَّيْن؟

الحل

الجزء الأول

بالنسبة إلى كلِّ خطٍّ من الخطوط المرسومة على التمثيل البياني للسرعة المتجهة مقابل الزمن، يُمكننا رسم خطٍّ مكافئ على التمثيل البياني للسرعة القياسية مقابل الزمن، كما هو موضَّح في الشكل الآتي.

يُمكننا الآن المقارنة بين السرعتين القياسيتين للجسمين. تتغيَّر السرعة القياسية لكلٍّ من الجسمين، لكننا نلاحِظ أنها لا تتغيَّر بالمقدار نفسه خلال الزمن نفسه. ويوضِّح الشكل الآتي السرعتين المتوسطتين لكلا الجسمين ممثَّلتين بخطَّيْن أفقيَّيْن متقطِّعَيْن.

يتَّضِح من ذلك أن السرعتين المتوسطتين غير متساويتين.

الجزء الثاني

المسافة التي يقطعها الجسم تساوي حاصل ضرب السرعة القياسية والزمن؛ أيْ تساوي المساحة أسفل الخط في التمثيل البياني للسرعة القياسية مقابل الزمن. الشكل الآتي يوضِّح مساحة كلٍّ من الجسمين.

من المؤكَّد أن هاتين المساحتين غير متساويتين، وهو ما يعني أن الجسمين لا يقطعان المسافة نفسها.

تتشابه العلاقة بين التمثيلات البيانية للسرعة القياسية مقابل الزمن والتمثيلات البيانية للسرعة المتجهة مقابل الزمن إلى حدٍّ كبير مع العلاقة بين التمثيلات البيانية للمسافة مقابل الزمن والتمثيلات البيانية للإزاحة مقابل الزمن.

انظر التمثيلات البيانية الآتية.

يوضِّح كلٌّ من التمثيل البياني للسرعة المتجهة مقابل الزمن والتمثيل البياني للإزاحة مقابل الزمن جسمين يتحرَّكان بالسرعة القياسية نفسها في اتجاهين متعاكسين. والسرعة القياسية لهذين الجسمين تساوي السرعة الموضَّحة على التمثيل البياني للسرعة القياسية مقابل الزمن والتمثيل البياني للمسافة مقابل الزمن.

دعونا نلقِ نظرةً على مثال يتضمَّن تفسير التمثيل البياني للإزاحة مقابل الزمن لجسمين في حالة حركة.

مثال ٢: المقارنة بين السرعات القياسية والسرعات المتجهة للأجسام باستخدام التمثيل البياني للإزاحة مقابل الزمن.

يوضِّح التمثيل البياني كيفية تغيُّر إزاحة جسمين مع الزمن. السهمان الرماديان على التمثيل البياني لهما نفس الطول.

  1. هل يتحرَّك الجسمان بنفس السرعة المتجهة؟
  2. هل يتحرَّك الجسمان بنفس السرعة القياسية؟

الحل

الجزء الأول

تتغيَّر إزاحة الجسمين بعيدًا عن الصفر بنفس المعدَّل. ويتَّضِح ذلك من حقيقة أن السهمين الرماديين اللذين يمثِّلان مقدارَيْ إزاحتَيِ الجسمين عند اللحظة نفسها متساويان، وأن هذين الخطين مستقيمان.

يبتعد أحد الخطين عن الصفر باتجاه قِيَم الإزاحة الموجبة، بينما يبتعد الخط الآخَر عن الصفر باتجاه قِيَم الإزاحة السالبة. هذا يعني أن الجسمين يتحرَّكان في اتجاهين متعاكسين. ومن ثَمَّ، تكون إزاحتا الجسمين في اتجاهين متعاكسين.

والسرعة المتجهة هي المعدَّل الزمني للتغيُّر في الإزاحة. وعليه، فإن السرعة المتجهة كمية متجهة؛ ولهذا يتضمَّن تعريف السرعة المتجهة اتجاهها. وبما أن إزاحتَيِ الجسمين في اتجاهين مختلفين، فإن سرعتَيْهما المتجهتين غير متساويتين.

الجزء الثاني

مقدار إزاحة الجسم يمثِّل المسافة التي يقطعها الجسم في اتجاه واحد. وإزاحتا الجسمين متساويتان في المقدار. تحدث هاتان الإزاحتان في فترتين متساويتين. والسرعة القياسية هي المعدَّل الزمني للتغيُّر في المسافة؛ ومن ثَمَّ، فإن السرعتين القياسيتين للجسمين متساويتان.

هيَّا نلقِ نظرةً على مثال آخَر.

مثال ٣: المقارنة بين السرعة القياسية والسرعة المتجهة للأجسام باستخدام التمثيل البياني للإزاحة مقابل الزمن

يوضِّح التمثيل البياني كيفية تغيُّر إزاحة جسمين بتغيُّر الزمن. السهمان الرمادين في التمثيل البياني لهما نفس الطول.

  1. هل يتحرَّك الجسمان بنفس السرعة المتجهة؟
  2. هل يتحرَّك الجسمان بنفس السرعة القياسية؟

الحل

الجزء الأول

تتغيَّر إزاحتا الجسمين مع الزمن بنفس المعدَّل حتى خلال النصف الأول من حركة الجسمين. بعد هذه اللحظة، سيعكس الجسم اتجاهه، كما هو موضَّح بالخط الأحمر المتقطِّع. إذن الجسمان ليس لهما السرعة المتجهة نفسها.

الجزء الثاني

في الشكل الآتي، تمثِّل الأسهم الأفقية حركة الجسمين.

يُمكن تعديل هذا الشكل بحيث يُظهِر فقط الأطوال الأفقية للأسهم.

لاحِظ أن الخط الأحمر انقسم إلى خطين لتسهيل تصوُّر الحركة، لكن الحركة الفعلية للجسم تكون على الخط نفسه؛ بحيث يعكس الجسم اتجاه حركته.

نستنتج من ذلك أن الأطوال الأفقية الكلية للأسهم متساوية. وهذا يعني أن الجسمين يقطعان مسافتين متساويتين.

وبما أن الجسمين يقطعان مسافتين متساويتين في فترتين متساويتين، فإن سرعتَيْهما متساويتان.

هيَّا نلقِ نظرةً على مثال آخَر.

مثال ٤: المقارنة بين السرعات القياسية والسرعات المتجهة للأجسام باستخدام التمثيل البياني للإزاحة مقابل الزمن

يوضِّح التمثيل البياني كيفية تغيُّر إزاحة جسمين بتغيُّر الزمن. الخطان الممثَّلان في التمثيل البياني متوازيان.

  1. هل يتحرَّك الجسمان بنفس السرعة المتجهة؟
  2. هل يتحرَّك الجسمان بنفس السرعة القياسية؟

الحل

الجزء الأول

تتغيَّر إزاحتا الجسمين مع الزمن بنفس المعدَّل؛ لأن الخطين الأزرق والأحمر متوازيان. لكن الإزاحتين الابتدائيتين غير متساويتين.

ويمثِّل السهمان الموضَّحان في الشكل الآتي حركة الجسمين.

في التمثيل البياني السابق، O هي النقطة التي قِيستْ عندها الإزاحة، و𝑠 مقدار نصْف إزاحة أيٍّ من الجسمين.

والتغيُّر في إزاحتَيِ الجسمين الناتِج عن حركتَيْهما يساوي إزاحتَيْهما النهائيتين ناقص إزاحتَيْهما الابتدائيتين.

ويمثِّل السهم الأزرق تغيُّرًا في الإزاحة بمقدار: 02𝑠=2𝑠.

بينما يمثِّل السهم الأحمر التغيُّر في الإزاحة بمقدار: 𝑠𝑠=2𝑠.

الإزاحتان متساويتان في كلتا الحالتين.

وبما أن الجسمين يقطعان إزاحتين متساويتين في الزمن نفسه، فإن لهما السرعة المتجهة نفسها.

ثمة طريقة أخرى للتفكير في ذلك، وهي تذكُّر أن قيمتَيْ ميل المستقيمين متساويتان ولهما الإشارة نفسها. وميل التمثيل البياني للإزاحة مقابل الزمن يساوي السرعة المتجهة. ومن ثَمَّ، فالميلان المتساويان يمثِّلان سرعتين متجهتين متساويتين.

الجزء الثاني

بما أن الجسمين لا يُغيِّران اتجاهَيْ حركتَيْهما، فإن السرعة القياسية تساوي السرعة المتجهة. وبما أن السرعتين المتجهتين للجسمين متساويتان، فإن سرعتَيْهما القياسيتين لا بدَّ أن تكونا متساويتين.

ويُمكن تمثيل حركة جسم له سرعة متجهة متغيِّرة على التمثيل البياني للسرعة المتجهة مقابل الزمن من خلال خط غير أفقي. وعلى التمثيل البياني للإزاحة مقابل الزمن، تُمثَّل حركة الجسم الذي يتحرَّك بهذه الطريقة بخطٍّ منحنٍ.

والآن، لنلقِ نظرةً على مثال آخَر.

مثال ٥: تحديد المنطقة على التمثيل البياني للإزاحة مقابل الزمن التي تقلُّ فيها سرعة الجسم

التغيُّر في إزاحة جسم مع الزمن موضَّح في التمثيل البياني للإزاحة مقابل الزمن. في أيِّ منطقة على التمثيل البياني تتناقص سرعة الجسم؟

الحل

يَستخدِم التمثيل البياني الرمز 𝑑 للتعبير عن الإزاحة، بدلًا من الرمز 𝑠 الأكثر استخدامًا. يوضِّح السؤال أن هذا تمثيل بياني للإزاحة مقابل الزمن، والمحور الرأسي يَقِيس الإزاحة.

من الأخطاء التي يُمكن الوقوع فيها بسهولة في هذا المثال هو ملاحَظة أن الخط ينحني في اتجاه الإزاحة صفر في المنطقة DE، والاعتقاد أن هذه هي المنطقة التي لا بدَّ أن تقلَّ فيها السرعة. وفي الواقع، فالمنطقة التي تقلُّ فيها السرعة هي BC. هيَّا نفكِّر في السبب وراء ذلك.

إذا افترضنا أن الجسم يتحرَّك على طول خط، فإن حركة الجسم الابتدائية تكون في الاتجاه الموجب على طول الخط لحين الوصول إلى اللحظة C. وبين C وD، لا تتغيَّر الإزاحة. ومن D فما بعدها، تصبح الإزاحة في الاتجاه السالب.

وحركة الجسم بالسهمين الآتيين تمثِّل الاتجاهين الموجب والسالب، مع توضيح موضع الجسم عند اللحظات المذكورة على التمثيل البياني على طول كلِّ سهم.

عند اللحظتين C وD، يكون الجسم في حالة سكون. وبين اللحظتين D وE، تزداد سرعة الجسم في الاتجاه السالب، بدءًا من السكون.

ويصبح الجسم في حالة سكون بين اللحظتين B وC، ومن ثَمَّ، تتناقص سرعته.

وجدير بالذكر أنه إذا لم نفترض أن الجسم تحرَّك على طول خط مستقيم، فسيصبح التمثيل البياني للإزاحة مقابل الزمن متَّسِقًا مع الحركة الأفقية للجسم، كما هو موضَّح في الشكل الآتي.

في هذه الحالة، سيكون من الصواب القول إن السرعة المتجهة الأفقية للجسم، وليست سرعته القياسية، تقلُّ بين B وC.

هيَّا نلخِّص الآن ما تعلَّمناه في هذا الشارح.

النقاط الرئيسية

  • تقع النقاط المحدَّدة على التمثيل البياني للإزاحة مقابل الزمن والتمثيل البياني للسرعة المتجهة مقابل الزمن في الجزء الذي تحدُّه القِيَم الموجبة للزمن على التمثيل البياني.
  • بالنسبة إلى جسم يتحرَّك على طول خط مستقيم، فإن انعكاس اتجاه حركة الجسم على التمثيل البياني للإزاحة مقابل الزمن يقابله تغيُّر في إشارة ميل الخط الذي يمثِّل الحركة على التمثيل البياني للإزاحة مقابل الزمن، بينما على التمثيل البياني للسرعة المتجهة مقابل الزمن، فيُقابله تغيُّر في مكان الخط الذي يمثِّل الحركة (سواء كان مرسومًا أعلى محور الزمن أم أسفله).
  • في الحالات التي تقترب فيها السرعة المتجهة للجسم من القيمة صفر، فإن ميل التمثيل البياني للسرعة القياسية مقابل الزمن لحركة الجسم يكون سالبًا. أمَّا في الحالات التي تبتعد فيها السرعة المتجهة عن القيمة صفر، يكون ميل التمثيل البياني للسرعة القياسية مقابل الزمن موجبًا. ولا يُهِمُّ إذا ما كانت السرعة المتجهة تقترب من الصفر من الاتجاه السالب أو من الاتجاه الموجب.

تستخدم نجوى ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. معرفة المزيد حول سياسة الخصوصية لدينا.